Structure of Matter 2

Exam June 21st, 2013. Arletta Jacobshal 02, 14.00-17.00.

o Write your name and student number on <u>each</u> sheet you use.

- o Read the problems carefully and give **complete**, **clear**, **and readable answers**. Illegible answers will be discarded.
- o The exam has 8 problems. The max. points per question are indicated.
- o Answers may be given in Dutch or English.

Problem 1

i) According to valence bond theory, which orbitals on bromine atoms overlap in the formation of the

bond in Br₂?

(1 pt)

(2 pts)

(1 pt)

- ii) What is the hybridization of the central atom of the XeF₄ molecule? How many lone pairs of electrons does the molecule have?
- iii) Please complete the following sentence with the possible answers below:
- A typical double bond
- a. is stronger and shorter than a single bond
- b. consists of one σ bond and one π bond
- c. imparts rigidity to a molecule
- d. consists of two shared electron pairs
- e. All of the above answers are correct.

Solution

- The 4p orbitals on bromine atoms overlap in the formation of the bond in Br₂
- the hybridization of the central atom of the XeF_4 molecule is sp^3d^2 ; the molecule has 2 lone pairs

Of the 5s and 5p electrons in the outermost orbit of Xe, two of the 5p orbital electrons get excited to the vacant 5 d orbital resulting in 4 unpaired hybridized electrons, 2 in 5p and 2 in 5d orbitals.

e. All of the above answers concerning a typical double bond are correct.

Problem 2

The RbH molecule can be described quite well by a Morse oscillator with potential $V = hcD_e \{1 - e^{-a(R-R_e)}\}^2$ where $hcD_e = 3.79 \ eV$. Solving the Schrödinger equation for the Morse potential yields for the permitted energy levels:

$$G(\nu) = \left(\nu + \frac{1}{2}\right)\tilde{\nu} - \left(\nu + \frac{1}{2}\right)^2 \chi_e \tilde{\nu}$$

i) For Rb¹H, $\tilde{\nu} = 936.8 \ cm^{-1}$, and $\chi_e \tilde{\nu} = 14.16 \ cm^{-1}$
Calculate the dissociation energy hcD_0 of the Rb-¹H molecule.

ii) Calculate the dissociation energy if we replace the ¹H atom with ²H (deuterium).

(3 pts)

(2 pts)

Solution:

i)

$$\begin{split} hcD_0 &= hcD_e - G(0) \\ &= hcD_e - \frac{1}{2}\tilde{\nu} - \frac{1}{4}\chi_e\tilde{\nu} \end{split}$$

 $= 3.79 - \frac{1}{2} * 936.8 * 1.239 \cdot 10^{-4} - \frac{1}{4} 14.16 * 1.239 \cdot 10^{-4} = 3.73 \ eV$ [1 pt for the right equation, 1 pt for the correct result]

ii) if we replace the H atom with D, the effective mass increased by a factor $\frac{\frac{1}{85.47+1}}{\frac{85.47+2}{85.47+2}} = 1.98$. Since the wavenumber scales with 1/sqrt(m_{eff}), we can find the new wavenumbers $\tilde{\nu} =$

Since the wavenumber scales with 1/sqrt(m_{eff}), we can find the new wavenumbers
$$\tilde{v} = 936.8/\sqrt{1.98} = 665.75 \ cm^{-1}$$
, and $\chi_e \tilde{v} = 14.16/\sqrt{1.98} = 10.06 \ cm^{-1}$. So again we have
 $hcD_0 = hcD_e - G(0)$
 $= hcD_e - \frac{1}{2}\tilde{v} - \frac{1}{4}\chi_e \tilde{v}$
 $= 3.79 - \frac{1}{2} * 665.75 * 1.239 \cdot 10^{-4} - \frac{1}{4}10.06 * 1.239 \cdot 10^{-4} = 3.75 \ eV$

[1 pt for the right effective mass, also given if the atomic mass for Rb was only approximately correct, 1 pt for knowing that the wavenumber scales with $1/sqrt(m_{eff})$, 1 pt for the correct result]

Problem 3

What properties does the molecule have to satisfy for

- i) pure rotational transitions;
- ii) rotational Raman transitions;
- iii) infrared absorption activity?
- iv) Give the exclusion rule for vibrational modes.

(1 pt each, total 4 pts)

Solution

- *i)* For pure rotation transitions, the molecule must be polar.
- *ii)* For Rotational Raman transitions, the molecule must be anisotropically polarizable.
- *iii)* For a molecule to be Infrared active the motion corresponding to a normal mode should be accompanied by a change of dipole moment
- iv) If the molecule has a centre of symmetry, then no modes can be both infrared and Raman active.

Problem 4

- i) Explain the difference between the hexagonal close-packed and the face-centred cubic structure.
 (2 pts)
- ii) Name 2 examples each for

 a hexagonal close-packed structure
 diamond structure
 (2 pt)

 iii) Define the first and the second Brillouin zone of a square lattice (2D); include drawing.

(2 pt)

Solution:

i) Both are close packed lattices formed by stacking atoms on hexagonal basal plane:

- ii) hcp: H, He, N,Be, Mg,Co, Zn, Sc, Ti,Y, Zr, Tc, Ru, Cd, Hf, Re, Os, Tl, Pr, Gd, Tb, Dy, Ho, Er, Lu diamond: C, Ge, Si, Zn
- iii) The 1st BZ is the primitive unit cell of the reciprocal lattice and is constructed in the same way as the Wigner-Seitz cell for the lattice in real space. The 2nd BZ is constructed in a similar way but considering the 2nd nearest neighbours:

3

Problem 5

A soft X-ray source with Gd anode emits x-rays with a wavelength of 6,7 nm. A chemist asks if his organic crystal built up of large molecules and with the orthogonal unit vectors a = 11,4 nm; b=12nm and c=13,5nm can be investigated by x-ray diffraction. Is it possible to investigate the (123) plane with this X-ray source?

(3 pts)

Solution: For the (1 2 3) plane, calculate the absolute value of scattering vector Δk for given lattice parameters, a = 11.4 nm; b = 12 nm and c = 13.5 nm with Laue equations. [1 pt]

$$d = \frac{1}{\sqrt{\frac{1^2}{11.4nm^2} + \frac{2^2}{12.nm^2} + \frac{3^2}{13.5nm^2}}} = 3.38nm$$
 [0.5 pts]

 $d_{min} = \frac{6.7nm}{2} = 3.35nm$ [0.5 pts]

So a result is possible as 3.38 nm > 3.35nm [1 pt]

Problem 6

The energy near a valence band edge is given by $E_k = -1 \times 10^{-26} k^2 ergs$ (nearly free electron approximation).

(a) Calculate the effective mass of an electron in the orbital $k=1\times10^7$ k_x cm⁻¹. Give the sign and the magnitude of the effective mass.

Solution:
$$E = \frac{\hbar^2}{2m^*} k^2$$
 where m^* is the effective mass. Comparing with the given value of the energy $E_k = -1 \times 10^{-26} k^2$ ergs, one deduces for the effective mass of the electron

$$-1x10^{-26} = \frac{\hbar^2}{2m^*} \Longrightarrow m_e^* = -\frac{\hbar^2}{2x10^{-26}} = -\frac{\left(1.05x10^{-27}\right)^2}{2x10^{-26}} = -0.55x10^{-28} erg.s^2.m^{-2}$$

(b) If this electron is removed and the band is otherwise full, what is the effective mass (sign and magnitude) of the hole?

(1 pt)

(2 pts)

Solution: since the effective mass of the hole is minus that of the electron,

$$m_h^* = 0.55 x 10^{-28} erg.s^2.m^{-2}$$

(c) What is the direction and the magnitude of the wave vector of the hole?

(1 pt)

Solution:
$$k_{h} = -k_{e} \Longrightarrow k_{e} = 1 \times 10^{7} \hat{k}_{x} \text{ cm}^{-1}; k_{h} = -1 \times 10^{7} \hat{k}_{x} \text{ cm}^{-1}$$

Problem 7

(a) Gallium arsenide has a band gap of 1.40 eV. At what wavelength does it start to absorb?

(1 pt)

The band gap determines threshold of continuous optical absorption at v_{gap} , therefore since $hv_{gap} = 1.40 \text{ eV} \times 1.6019 \times 10^{-12} \text{ erg} = 2.24 \times 10^{-12} \text{ erg}$, and since $h = 6.6254 \times 10^{-27} \text{ erg} \text{ s}$, $v_{gap} = 2.24 \times 10^{-12} \text{ erg}/6.6254 \times 10^{-27} \text{ erg} \text{ s} = 0.3381 \times 10^{15} \text{ s}^{-1}$; $v_{gap} = c/\lambda \Rightarrow \lambda = c/v_{gap} = 3.0 \times 10^8 \text{ m s}^{-1}/0.3381 \times 10^{15} \text{ s}^{-1} = 8.87 \times 10^{-7} \text{ m} = 887 \text{ nm}.$

Problem 8

What is the necessary and sufficient condition to have optical branches in the phonon dispersion curves?

(1 pt)

Draw the phonon dispersion curves for such a crystal and label the curves.

(2 pts)

Solution: The number of optical branches is given by 3s-3 where s is the number of atoms in the basis of the crystal structure, hence $s \ge 2$ to have optical branches.

A list of some fundamental constants, definitions and relations

Constant	Symbol	Approximate Value
Speed of light in vacuum	c	$3.00 \times 10^8 \text{ m/s}$
Permeability of vacuum	μ_0	$12.6 \times 10^{-7} \text{ H/m}$
Permittivity of vacuum	ϵ_0	$8.85 \times 10^{-12} \text{ F/m}$
Magnetic flux quantum	$\phi_0 = \frac{h}{2e}$	2.07×10^{-15} Wb
Electron charge	e	$1.602176 \times 10^{-19} \text{ C}$
Electron mass	m_e	$9.11 \times 10^{-31} \text{ kg}$
Proton mass	m_p	$1.673 \times 10^{-27} \text{ kg}$
Neutron mass	m_n	$1.675 \times 10^{-27} \text{ kg}$
Proton-electron mass ratio	m _p	1836
Boltzman constant	k_b	$1.3806503 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1}$
Boltzman constant [cm ⁻¹]	k_b	$0.6950356 \text{ cm}^{-1}$
planck constant/ 2π	\hbar	$1.05457 \times 10^{-34} {\rm ~J~s}$
atomic mass unit (a.m.u.)	amu	$1.66053886 \times 10^{-27} \text{ kg}$
electron volt to Joule	1 eV	$1.602176 \times 10^{-19} \text{ J}$
electron volt to wavenumber	1 eV	8065.395 cm^{-1}
wavenumber to frequency	$1 \ {\rm cm^{-1}}$	29.98 GHz

riod	group 1* Ia				alkali r	metals		ot	her me	tals		oble gas	ses						18 VIIIb O
а 1	1 H	2 II a			alkalin transit	e earth tion me [.]	metals tals	ot	her nor Nogens	imetals	📃 la 📃 ai	nthani) ctinides	des :	13 IIIb IIIa	14 IVb IVa	15 Vb Va	16 VIb VIa	17 VIIb VIIa	2 He
2	₃ Li	4 Be												5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg	III III	3 (a** (b**	4 IVa ★ IVb	5 Va Vb	6 VIa VIb	7 VIIa VIIb	*	9 VIIIa VIIIb		11 Ib	12 IIb	13 Al	14 Si	15 P	16 S	17 Cl	18 A r
4	19 K	20 Ca	21 S i	C	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 RD	38 Sr	39 Y)	40 Zr	41 Nd	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 La	8	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T I	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 A	c	104 ****	105 ****	106 ****	107 ****	108 ****	109 ****	110 ****	111 ****	112 ****						
				T	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
				6	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
				7	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	