Structure of Matter 2

Exam June $21^{\text {st }}$, 2013. Arletta Jacobshal 02 , 14.00-17.00.

> o Write your name and student number on each sheet you use.
> o Read the problems carefully and give complete, clear, and readable answers. Illegible answers will be discarded.
> o The exam has 8 problems. The max. points per question are indicated.
> o Answers may be given in Dutch or English.

Problem 1

i) According to valence bond theory, which orbitals on bromine atoms overlap in the formation of the
bond in Br_{2} ?
ii) What is the hybridization of the central atom of the XeF_{4} molecule? How many lone pairs of electrons does the molecule have?
iii) Please complete the following sentence with the possible answers below:

A typical double bond \qquad
a. is stronger and shorter than a single bond
b. consists of one σ bond and one π bond
c. imparts rigidity to a molecule
d. consists of two shared electron pairs
e. All of the above answers are correct.

Solution
The $4 p$ orbitals on bromine atoms overlap in the formation of the bond in Br_{2}
the hybridization of the central atom of the XeF_{4} molecule is $s p^{3} d^{2}$; the molecule has 2 lone pairs

Of the 5 s and 5 p electrons in the outermost orbit of Xe , two of the 5 p orbital electrons get excited to the vacant 5 d orbital resulting in 4 unpaired hybridized electrons, 2 in $5 p$ and 2 in $5 d$ orbitals.
e. All of the above answers concerning a typical double bond are correct.

Problem 2

The RbH molecule can be described quite well by a Morse oscillator with potential $V=h c D_{e}\left\{1-e^{-a\left(R-R_{e}\right)}\right\}^{2}$ where $h c D_{e}=3.79 \mathrm{eV}$. Solving the Schrödinger equation for the Morse potential yields for the permitted energy levels:

$$
G(v)=\left(v+\frac{1}{2}\right) \tilde{v}-\left(v+\frac{1}{2}\right)^{2} \chi_{e} \tilde{v}
$$

i) \quad For $\mathrm{Rb}^{1} \mathrm{H}, \tilde{v}=936.8 \mathrm{~cm}^{-1}$, and $\chi_{e} \tilde{v}=14.16 \mathrm{~cm}^{-1}$

Calculate the dissociation energy $h c D_{0}$ of the $\mathrm{Rb}-{ }^{1} \mathrm{H}$ molecule.
ii) Calculate the dissociation energy if we replace the ${ }^{1} \mathrm{H}$ atom with ${ }^{2} \mathrm{H}$ (deuterium).

Solution:
i)

$$
\begin{aligned}
& h c D_{0}=h c D_{e}-G(0) \\
& =h c D_{e}-\frac{1}{2} \tilde{v}-\frac{1}{4} \chi_{e} \tilde{v}
\end{aligned}
$$

$=3.79-\frac{1}{2} * 936.8 * 1.239 \cdot 10^{-4}-\frac{1}{4} 14.16 * 1.239 \cdot 10^{-4}=3.73 \mathrm{eV}$ [1 pt for the right equation, 1 pt for the correct result]
ii) if we replace the H atom with D, the effective mass increased by a factor $\frac{\frac{85.47 * 1}{8557+1+1}}{\frac{85742}{85.47+2}}=1.98$.

Since the wavenumber scales with $1 /$ sqrt $\left(m_{\text {eff }}\right)$, we can find the new wavenumbers $\tilde{v}=$ $936.8 / \sqrt{1.98}=665.75 \mathrm{~cm}^{-1}$, and $\chi_{e} \tilde{v}=14.16 / \sqrt{1.98}=10.06 \mathrm{~cm}^{-1}$. So again we have

$$
h c D_{0}=h c D_{e}-G(0)
$$

$$
=h c D_{e}-\frac{1}{2} \tilde{v}-\frac{1}{4} \chi_{e} \tilde{v}
$$

$$
=3.79-\frac{1}{2} * 665.75 * 1.239 \cdot 10^{-4}-\frac{1}{4} 10.06 * 1.239 \cdot 10^{-4}=3.75 \mathrm{eV}
$$

[1 pt for the right effective mass, also given if the atomic mass for Rb was only approximately correct, 1 pt for knowing that the wavenumber scales with $1 / \mathrm{sqrt}\left(m_{\text {eff }}\right), 1 \mathrm{pt}$ for the correct result]

Problem 3

What properties does the molecule have to satisfy for
i) pure rotational transitions;
ii) rotational Raman transitions;
iii) infrared absorption activity?
iv) Give the exclusion rule for vibrational modes.
(1 pt each, total 4 pts)

Solution

i) For pure rotation transitions, the molecule must be polar.
ii) For Rotational Raman transitions, the molecule must be anisotropically polarizable.
iii) For a molecule to be Infrared active the motion corresponding to a normal mode should be accompanied by a change of dipole moment
iv) If the molecule has a centre of symmetry, then no modes can be both infrared and Raman active.

Problem 4

i) Explain the difference between the hexagonal close-packed and the face-centred cubic structure.
ii) Name 2 examples each for - a hexagonal close-packed structure

- diamond structure
iii) Define the first and the second Brillouin zone of a square lattice (2D); include drawing.

Solution:

i) Both are close packed lattices formed by stacking atoms on hexagonal basal plane:

$a b a b \rightarrow h c p$

$a b c a b c \rightarrow f c c$
ii) hcp: H, He, N, Be, Mg,Co, Zn, Sc, Ti,Y, Zr, Tc, Ru, Cd, Hf, Re, Os, Tl, Pr, Gd, Tb, Dy, Ho, Er, Lu
diamond: C, Ge, Si, Zn
iii) The $1^{\text {st }} \mathrm{BZ}$ is the primitive unit cell of the reciprocal lattice and is constructed in the same way as the Wigner-Seitz cell for the lattice in real space. The $2^{\text {nd }} \mathrm{BZ}$ is constructed in a similar way but considering the $2^{\text {nd }}$ nearest neighbours:

First BZ

Second BZ

Problem 5

A soft X-ray source with Gd anode emits x -rays with a wavelength of $6,7 \mathrm{~nm}$. A chemist asks if his organic crystal built up of large molecules and with the orthogonal unit vectors $a=11,4 \mathrm{~nm} ; \mathrm{b}=12 \mathrm{~nm}$ and $\mathrm{c}=13,5 \mathrm{~nm}$ can be investigated by x -ray diffraction. Is it possible to investigate the (123) plane with this X ray source?

Solution: For the (123) plane, calculate the absolute value of scattering vector Δk for given lattice parameters, $a=11.4 \mathrm{~nm} ; \mathrm{b}=12 \mathrm{~nm}$ and $\mathrm{c}=13.5 \mathrm{~nm}$ with Laue equations. [1 pt]

$$
\begin{equation*}
d=\frac{1}{\sqrt{\frac{1^{2}}{11.4 \mathrm{~nm}^{2}}+\frac{\mathrm{L}^{2}}{12 \mathrm{~nm}^{2}}+\frac{3^{2}}{13.5 \mathrm{~nm}^{2}}}}=3.38 \mathrm{~nm} \tag{0.5pts}
\end{equation*}
$$

$$
\begin{equation*}
d_{\min }=\frac{6.7 \mathrm{~nm}}{2}=3.35 \mathrm{~nm} \tag{0.5pts}
\end{equation*}
$$

So a result is possible as $3.38 \mathrm{~nm}>3.35 \mathrm{~nm} \quad$ [1 pt]

Problem 6

The energy near a valence band edge is given by $E_{k}=-1 \times 10^{-26} \mathrm{k}^{2}$ ergs (nearly free electron approximation).
(a) Calculate the effective mass of an electron in the orbital $k=1 \times 10^{7} \mathrm{k}_{\mathrm{x}} \mathrm{cm}^{-1}$. Give the sign and the magnitude of the effective mass.

Solution: $\mathbf{E}=\frac{\hbar^{2}}{2 m^{*}} \mathrm{k}^{2}$ where m^{*} is the effective mass. Comparing with the given value of the energy $E_{k}=-1 \times 10^{-26} k^{2}$ ergs, one deduces for the effective mass of the electron

$$
-1 \times 10^{-26}=\frac{\hbar^{2}}{2 m^{*}} \Rightarrow m_{e}^{*}=-\frac{\hbar^{2}}{2 \times 10^{-26}}=-\frac{\left(1.05 \times 10^{-27}\right)^{2}}{2 \times 10^{-26}}=-0.55 \times 10^{-28} \operatorname{erg} \cdot s^{2} \cdot \mathrm{~m}^{-2}
$$

(b) If this electron is removed and the band is otherwise full, what is the effective mass (sign and magnitude) of the hole?

Solution: since the effective mass of the hole is minus that of the electron,

$$
m_{h}^{*}=0.55 \times 10^{-28} \operatorname{erg} \cdot s^{2} \cdot m^{-2}
$$

(c) What is the direction and the magnitude of the wave vector of the hole?

$$
\text { Solution: } \mathrm{k}_{\mathrm{h}}=-\mathrm{k}_{\mathrm{e}} \Rightarrow \mathrm{k}_{\mathrm{e}}=1 \times 10^{7} \hat{\mathrm{k}}_{\mathrm{x}} \mathrm{~cm}^{-1} ; \mathrm{k}_{\mathrm{h}}=-1 \times 10^{7} \hat{\mathrm{k}}_{\mathrm{x}} \mathrm{~cm}^{-1}
$$

Problem 7

(a) Gallium arsenide has a band gap of 1.40 eV . At what wavelength does it start to absorb?

The band gap determines threshold of continuous optical absorption at $v_{\text {gap }}$, therefore since $h v_{\text {gap }}=1.40 \mathrm{eV} \times 1.6019 \times 10^{-12} \mathrm{erg}=2.24 \times 10^{-12} \mathrm{erg}$, and since $h=6.6254 \times 10^{-27} \mathrm{erg} \mathrm{s}$,
$v_{\text {gap }}=2.24 \times 10^{-12} \mathrm{erg} / 6.6254 \times 10^{-27} \mathrm{erg} s=0.3381 \times 10^{15} \mathrm{~s}^{-1}$;
$v_{\text {gap }}=c / \lambda \Rightarrow \lambda=c / v_{\text {gap }}=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} / 0.3381 \times 10^{15} \mathrm{~s}^{-1}=8.87 \times 10^{-7} \mathrm{~m}=887 \mathrm{~nm}$.

Problem 8

What is the necessary and sufficient condition to have optical branches in the phonon dispersion curves?

Draw the phonon dispersion curves for such a crystal and label the curves.

Solution: The number of optical branches is given by $3 s-3$ where s is the number of atoms in the basis of the crystal structure, hence $s \geq 2$ to have optical branches.

A list of some fundamental constants, definitions and relations

Constant	Symbol	Approximate Value
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Permeability of vacuum	μ_{0}	$12.6 \times 10^{-7} \mathrm{H} / \mathrm{m}$
Permittivity of vacuum	ϵ_{0}	$8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
Magnetic flux quantum	$\phi_{0}=\frac{h}{2 e}$	$2.07 \times 10^{-15} \mathrm{~Wb}$
Electron charge	e	$1.602176 \times 10^{-19} \mathrm{C}$
Electron mass	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$
Proton mass	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
Neutron mass	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
Proton-electron mass ratio	$\frac{m_{p}}{m_{e}}$	1836
Boltzman constant	k_{b}	$1.3806503 \times 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$
Boltzman constant [cm ${ }^{-1}$]	k_{b}	$0.6950356 \mathrm{~cm}^{-1}$
planck constant/2 π	\hbar	$1.05457 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
atomic mass unit (a.m.u.)	amu	$1.66053886 \times 10^{-27} \mathrm{~kg}$
electron volt to Joule	1 eV	$1.602176 \times 10^{-19} \mathrm{~J}$
electron volt to wavenumber	1 eV	$8065.395 \mathrm{~cm}^{-1}$
wavenumber to frequency	$1 \mathrm{~cm}^{-1}$	29.98 GHz

58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\mathbf{C e}$	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

